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We study the degree of additivity of orthogonal Hilbert-space-valued measures 
on the lattice L(H) of all projections acting on a Hilbert space H. We present 
criteria for such measures to be completely additive and we establish the connec- 
tion between the additivity of orthogonal measures and the size of almost disjoint 
families on dim H. [For example, we show that every H-valued orthogonal meas- 
ure is weakly or-additive iff (dim H) '~ > dim H.] As a corollary we see that finitely 
additive orthogonal measures distinguish dimensions of Hilbert spaces (this can 
be viewed as a generalization of a theorem by Kruszynski). As a further corollary, 
we obtain that, for cardinals tc, v with 1r > v, lc > 3, there is no Jordan homo- 
morphism from a type/F-factor into a type/h-factor. Finally, we show that every 
lattice L(H) with (dim H) ~ dim H admits a nonzero free orthogonal measure 
with values in H. Our results contribute to the noncommutative probability 
theory and also may find applications in the theory of the representation of 
C*-algebras. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

The object ive o f  this p a p e r  is to s t rengthen h i ther to  k n o w n  results  a b o u t  
the add i t iv i ty  o f  o r t hogona l  vec tor  measures  ob t a ined  in H a m h a l t e r  (to, 
a ppea r )  and  Kruszynsk i  (1988). Measures  o f  this type  are  closely re la ted  to 
the o p e r a t o r  theory,  Hi lbe r t  space geometry ,  n o n c o m m u t a t i v e  p robab i l i t y  
theory ,  and  general ized funct ion  theory  (Golds te in ,  1991 ; H a mha l t e r ,  1991 ; 
Jaj te,  1979; Jaj te  and  Paszkiewicz,  1978; Kruszynsk i ,  1988, 1990; Masan i ,  
1970). They  also p lay  a significant role  in the founda t i ons  o f  q u a n t u m  theory  
(Kruszynsk i ,  1990; Pt/~k and  Pulmannov'~,  1991 ; V a r a d a r a j a n ,  1968). 

W e  shall  be main ly  in teres ted in the ques t ion  o f  when o r t hogona l  meas-  
ures a re  comple te ly  addi t ive  or  o ' -addi t ive.  P rob lems  o f  this k ind  of ten occur  
in classical  as well as n o n c o m m u t a t i v e  measure  theo ry  (Alexandroff ,  1941; 
B6aver and  Cook ,  1977; Dvure6enski j  et al., 1991; De  Lucia  and  Mora les ,  
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to appear). It has been proved in Hamhalter (to appear) that every finitely 
additive orthogonal measure rn: L ( H )  ~ H is completely additive whenever 
H is separable. This result cannot be generalized for every nonseparable 
space (Proposition 2.9). We show that its validity is relevant to combinator- 
ial properties of  dim H. Loosely speaking, it turns out that the size of the 
range of  an orthogonal measure determines its degree of additivity. It has 
been shown (Kruszynski, 1988) that dim K > d i m H  if and only if L ( H )  
admits a nonzero completely additive orthogonal measure with values in K. 
Our considerations yield a somewhat surprising strengthening of  this result: 
We have dim K >  dim H if and only if there is a nonzero orthogonal measure 
m: L ( H )  ~ If. As a consequence, we obtain that there is no Jordan homo- 
morphism q~: ~ ( H ) - - > ~ ( K )  (dim H>__3), where ~ ( H ) ,  ~ ( K )  are the 
C*-algebras of  all bounded operators on H, K, and dim K < d i m  H. [Thus, 
for instance, ~ ( H )  cannot be represented on a Hilbert space with strictly 
smaller dimension.] This result has been hitherto known only for finite- 
dimensional spaces (Kruszynski, 1988). Results about the nonexistence of 
nonzero orthogonal measures may be also relevant to the hidden parameter 
problem in quantum mechanics (Kruszynski, 1990; Manin, 1977). In the 
conclusion of  this paper we construct a nontrivial "free" orthogonal measure 
m: L ( H )  ~ H provided that (dim H )  ~ = dim H. 

The paper is divided into two parts. Section 1.1 is devoted to a short 
analysis of  almost disjoint families of sets which are an important  technical 
tool for further considerations. In Section 1.2 some auxiliary results about 
nonnegative Gleason measures are proved. The main new results are then 
presented in Section 2. 

1.1. Almost Disjoint Families of Sets 

Let ~c be a cardinal number. In this section we review some results of  
the set theory we shall use in the sequel. Our general reference here is Balcar 
and ~t~p/mek (1986). Let ~: be a cardinal number. By ~c § and cf(~) we shall 
denote a successor and a cofinal of  ~c, respectively. Let ~(~c) denote the 
power set of  1r and let [~c] v be the set consisting of all elements of  ~(~c) with 
the cardinality equal to v and let v~: mean the set of  all mappings of  v 
into ~:. We use the notation ~c v for ]v~c I. It is well known that ][~c]~l = ir ~ for 
any v_<~c. 

Definition 1.1. A family S c  [~c] ~ (resp. S c  [~:ff) is called v-almost dis- 
joint (resp. strongly v-almost disjoint) if I xmy[<  v, whenever x, y e S  
and x ~y.  

Proposition 1.2. Suppose that ~r _> co. Then ~c admits an co-almost dis- 
joint family S such that ISI > ~ if and only if ~c ~~ > ~c. 
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Proof If  S is an co-almost disjoint family and K ~~ = 1r then, obviously, 
I s I - <  l[~cY'l = ~ o  = ~ .  

Suppose that tr176162 Let us define for  every f C t c  a mapping 
.fe~ %c) by putting^~C=f[n (neco). I f f~g ,  then there is an noeco such 
thatf(no) r Thenf(n)  #~(n) for every n>no. Put Ss=Rg~. (Here Rgf  
denotes the range off .)  It follows that ISfl = co and Sfc~ Sgl < co for a n y f # g .  
Because I~o~KI;~, we can identify ~; with ~,~o"tr  and view 
S = ( S I ) j ~  as an co-almost disjoint family on ~c. We see that IS[= 
~7~ > 1r 1 

Let us remark that, if cf(tc)= co, then ~c~ ~c. The reverse implication 
holds if we admit the generalized continuum hypothesis (Balcar and 
St6pfinek, 1986). 

1.2. Additivity of Orthogonal Vector Measures 

Let us first fix some notations. Throughout the paper let H be an 
arbitrary (complex) Hilbert space with dim H>__ 3. Let ~ ( H )  stand for the 
C*-algebra of all bounded operators acting on H (with identity I). For 
As~(H)  let us denote by R(A) the range projection of A. Let S(H) and 
L(H) mean the sets of self-adjoint operators and projections acting on H, 
respectively. If  xeH, then P~ denotes a projection with P~(H)= sp{x}. As 
is known (see, e.g., Ptfik and Pulmannovfi, 1991 ; Varadarajan, 1968), L(H) 
forms an orthomodular lattice with an orthocomplementation P• I - P .  

A mapping s: L(H) ~ [0, ~ )  is said to be a Gleason measure (abbr. a 
measure) if supe~L(m Is(P)[ < ~ and if s( P + Q) = s( P) + s( Q), whenever 
P• [P, QeL(H)]. Let us introduce the following classes of measures. 

Definition 1.3. A measure s on L(H) is said to be ~c-additive (resp. 
weakly to-additive) [~c < (dim H)  +] if 

whenever (P~)~ ~1 is a family of mutually orthogonal projections (resp. finite- 
dimensional projections) with ]II < ~c. 

Let s be a measure on L(H). By our definition, s is co-additive (or, 
equivalently, s is finitely additive). We say that s is a-additive (resp. com- 
pletely additive) if it is cowadditive [resp. if it is (dim H)  +-additive]. The 
same convention is used for weakly additive measures. Clearly, s is 
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completely additive if and only if it is (dim H )  § additive. A measure 
s is said to be free if it vanishes on all finite-dimensional projections. Further, 
s is called weakly regular if, for any PeL(H) with s(P) > 0 there is a finite- 
dimensional projection Q<P such that s(Q)> 0 (Dvure~enskij, 1990; De 
Lucia and Morales, to appear). Obviously, every completely additive meas- 
ure is weakly regular and the reverse implication does not have to be true. 
For  instance, let H be a separable Hilbert space with an orthonormal basis 
(ei)i~N. Put sl = ZieN 2-itJ, where t~(P)= [tee• 2 [PeL(H)]. I f  s2 is any non- 
completely additive measure on L(H), then s=& +s2 is a weakly regular, 
noncompletely additive measure. 

We say that a measure s has a support if there is PEL(H) such that the 
following condition is satisfied: s(Q) = 0 iff QLP. It is well known that every 
o--additive measure with a support has to be completely additive (Maeda, 
1980). In Dvure~enskij (1990) an open problem has been posed of  when a 
measure s on L(H) which possesses a support has to be completely additive. 
The following assertion says that even a weakly regular measure s (which 
has a separable support) need not be completely additive. In this case we 
give an additional criterion for such a measure s to be completely additive. 

Proposition 1.4. (i) Every weakly regular measure on L(H) has a 
support. 

(ii) Every weakly regular, weakly o--additive measure on L(H) is com- 
pletely additive. 

Proof (i) Let s be a weakly regular measure on L(H). According to 
Aarnes (1970), s can be decomposed into a sum in such a way that s = Sl + s2, 
where Sl is a completely additive measure and & is a measure vanishing on 
all finite-dimensional projections. Making use of Gleason's (1957) theorem, 
we can represent sl by a nonnegative trace-class operator Ts~(H)  via the 
formula s l ( e ) = T r  TP [P~L(H)]. Put M=g~(xi)i~N, where (Xi)i~U is a 
sequence consisting of all nonzero eigenvectors of T. Then the projection P 
with the range M is a separable support for &. We shall show that P is also 
a support of  s. For  this, let us note first that s(P=)= 0. Indeed, if s(P • = 
$2(P• then there is a nonzero x e H  such that P~<P• and s(Px) = 
sffPx)r which is a contradiction. On the other hand, if s (Q)=0 ,  then 
&(Q) = 0 and so QLP. 

(ii) Let s be a weakly regular, weakly o--additive measure on L(H). 
Using the notation of the preceding paragraph, we obtain that the support 
P of s coincides with the support of &. Also, s2(P)= 0, because P is sep- 
arable. Thus, s2 ( / )=s2(P)+s2(P  • =0 and therefore s (=&) is completely 
additive. �9 
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2. ORTHOGONAL VECTOR MEASURES 

Throughout this section let K be an arbitrary Hilbert space. 

Definition 2.1. A mapping m" L(H) ~ K is said to be an orthogonal 
Gleason measure (abbr. an orthogonal measure) if m(P + Q) = m(P) + m(Q) 
and m(P).l_m(Q) for any orthogonal pair P, Q~L(H). 

Let m : L ( H ) ~ K  be an orthogonal measure. A mapping 
sm:L(H)--*[O, oo) defined by putting sm(P)=[lm(P)tl 2 [P~L(H)] is 
a measure on L(H). Indeed, Sm is obviously additive and 
sin(P) < [Im(e)l[2+ [[m(e• 2= [Im(I)ll 2 [PeL(H)]. We say that m is r-addi- 
tive (resp. weakly r-additive) if the corresponding measure sm is r-additive 
(resp. weakly r-additive). In the same way we define a weakly regular and 
free orthogonal measure. By N(m) we shall denote the space 
g~{m(P)IP~L(H)}. Two orthogonal measures m l :  L(H) ~K1 and 
m2: L(H) --, Kz are called equivalent if there is a unitary mapping q /o f  N(ml) 
onto N(m2) such that m2 = ~/o m~. Following Goldstein (1991), a bounded 
linear mapping F: N(H)  --* Kis  said to be an orthogonal vector field on ~(H) 
if (F(P),F(Q))=O, whenever P_LQ [P, Q~L(H)]. If F is an orthogonal 
vector field, then FIL(H) is an orthogonal measure. As the following theo- 
rem says, one can conversely prove that every orthogonal measure arises 
this way [see Hamhalter (to appear) for the separable case]. 

Theorem 2.2. Let m: L(H) ~ K be an orthogonal measure. Then there 
is an orthogonal vector field F: ~ ( H )  --, K such that FIL(H) = m. 

Proof(A sketch). Since the proof is essentially the same as in the separ- 
able case [given in Hamhalter (to appear)], we only outline the basic ideas. 
Fix an A~S(H) and denote by L(A) the Boolean algebra consisting of 
all projections of the smallest Abelian von Neumann subalgebra of ~ ( H )  
containing A. Then m extends to a linear mapping FA : sp L(A) ~ K. Simple 
computations show that 

IIFA(S) II-< IjSl[ Jim(I)II for every S~sp L(A) 

Thus, FA admits a continuous linear extension over sP L(A). Making use of 
the spectral theorem, we can define F(A)=FA(A) and then F(B)= 
F(Re B ) + F ( I m  B) for general BeM(H). By the preceding estimation we 
infer that 

HF(B) II _<2riBl[ llm(I)H 

Having noted that F is bounded on the unit ball, it suffices to prove that F 
is linear. For this purpose let us define, for any x~H, a mapping 
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rex: L(H) --. C such that 

mx(P) = (m(P), x), PsL(H)  

Then mx is a bounded complex-valued measure on L(H). According to a 
result of Matveichuk (1990), there is a bounded functional fx of N ( H )  
extending mx. Moreover, if A ~S(H), then fx(A) = (F(A), x)  (we again use 
the spectral theorem). Thus, (F(A~ +A2), x ) =  (F(A~)+F(A2), x) for any 
A~, A2eS(H) and xeK. Hencefore F is a linear mapping. [] 

Let us remark that Theorem 2.2 remains valid for any projection lattice 
of a v o n  Neumann algebra without type 12 direct summand. 

It has been shown in Hamhalter (to appear) that the dimension of every 
range space ~(m)  of  an orthogonal measure m is given by the corresponding 
measure sin. For  the convenience of  the reader we outline the proof  here. 

Lemma 2.3. Let ml: L(H) ~K1 and m2: L(H) ~K2 be two orthogonal 
measures. If  sin, = Sin2, then dim ~(rnl)  = dim R(m2). 

Proof(A sketch). We extend rnl and m2 to a continuous linear mapping 
/:1 and F2 on N(H) .  Employing the spectral theorem and the continuity of 
F1 and F2, it can be proved that [qFI(A)t[ = [IFz(A)H for any AsS(H).  

Let us define a mapping V:F~(S(H))~Fz(S(H)) by putting 
V(F~(A)) = F2(A) [A e S(H)].  Then Vis a well-defined isometry and therefore 
the sets F~(S(H)) and F2(S(H)) can be viewed as isometric metric spaces. 
Finally, 

~(rnj)=Fj(S(H)) +iFj(S(H)) (j= 1, 2) 

and so dim ~(ml)  = dim ~i~(m2). [] 

The main result of  this paper is based on the following lemma. 

Lemma 2.4. Let m: L(H) ~ K be an orthogonal vector measure and 
let S ~ ( d i m  H) .  Then dim K_> IS[ if either of  the following conditions is 
satisfied: 

(i) S is a strongly w-almost disjoint family and m is not completely 
additive. 

(ii) S is a v-almost disjoint family and m is a weakly v-additive measure 
which is not weakly v +-additive. 

Proof Let sm be the corresponding real-valued measure defined above 
and let f be a positive functional of  ~ ( H )  which extends Sm (Matveichuk, 
1990). Using the GNS construction, we can find a Hilbert space ~ and a 



Additivity of Vector Gleason Measures 9 

representation zr such that 

f (A)=(rc(A)x,x)  for any Ae~(H)  

where x e ~  is a cyclic vector for Jr. Then I[m(p)H2=f(P) = [I~(P)x][ 2. 
According to Lemma 2.3, we may assume that m(P) = zc(P)x [PeL(H)]. A 
representation zr can be decomposed (up to unitary equivalence) into the 
direct sum zrl@Jr2, where ~ c t : ~ ( H ) - - + ~ ( ~  z @ H ) = ~ ( o ~ , )  is either 
constantly zero or it is a representation of the form 

~r,(A)= y. @A, A ~ ( H )  

and the mapping :re2' ~(H)--+ a~(Jgau2) is either constantly zero or it is a 
representation such that ~2[2(=0, where 2f  is the ideal of all compact 
operators acting on H (Kadison and Ringrose, 1986). Let x = Xl @x2, where 
x~ e J f ~  l and x2e#*f~ 2. Let S e N ( d i m  H)  and let (ee)e~a be an orthonormal 
basis of H. Let us define a collection of mutually commuting projections 
(Pr)r~s such that each Pr is an orthogonal projection of H onto the space 
s-~ (e~)e~ ~. 

Suppose first that S is a strongly co-almost disjoint family and m is not 
completely additive. Then the component zr2 in the decomposition of Jr has 
to be nonzero. Indeed, in the opposite case, f (A)= ((Y~d @A)y, y) for 
some YeJf~2, which is a normal (i.e., completely additive) functional--a 
contradiction. If  ~z I # 72, then PrlPr2eJC and so 

1rz(Pr,) zr2(Pr2) = zr2(Prf r2) = 0 

On the other hand, we have ~2(Pr)#0 for every 7~S. To see this, let us 
note that each P7 projects onto a subspace with the dimension equal to 
dim H. Thus, Pr and I are equivalent projections [in N(H)] and so 
g2(PT) 50,  because the null space of zr2 is a two-sided ideal in ~ ( H ) .  

Suppose now that S is v-almost disjoint family and that m is weakly v- 
additive measure, which is not weakly v+-additive. As in the preceding 
paragraph, the mapping n2 cannot be zero on every v-dimensional projec- 
tion, for otherwise m(P)= Hzcl(P)y][ 2 ( y e ~ )  whenever dim P(H)< v--a 
contradiction with the assumption. Because all v-dimensional projections 
are equivalent [in ~ (H) ] ,  we see again that z~2(Pr)#O for every yeS.  On 
the other hand, let PeL(H) and dim P ( H ) <  v. We prove that rc2(P)--0. 
Suppose, on the contrary, that zc2(P) ~ 0. Then x2 is a cyclic vector for the 
representation zc2. Let us define a functional f2 by the equality J~(A)= 
< zr2(A)x2, x2 > [A e~ (H) ] .  Put 

~ p  = lr ( P ) ( ~ 2 )  = sp{ zr2(PQ)x2[ Q ~ L(H) } 



10 Hamhalter 

and sr = PN(H)P. Then a mapping zv: d --* ~(~vt~ defined via the formula 
ze(A) = zz(A)l~,ugp is a representation. Let coy be a vector functional on 
N ( ~ v )  corresponding to y = zr2(PQ)x2. Then coy o ze  is a normal functional. 
Indeed, we have 

coy(ze(A)) = (~re(A)~r2(PQ)x2, z2(PQ)x2) 

= Qr2(APQ)xz, zz(PQ)x2) 

= (rc2(OAQ)x2, x2) 

=f2(QAQ) for every Ae~r 

Every increasing net QF~Q ~ QFQ, where (F~)~ is a net of  the partial sums 
of the series F = ~ r  Pa, F, F~eL(H)~d ,  can be embedded into some W*- 
subalgebra of the form E~(H)E, with EeL(H) and dim E(H) < v. Since f2 
is a normal functional on every subalgebra of this type, we see that the 
functional coy o zp is normal. Because vectors rr2(PQ)x2 [QeL(H)] span a 
dense linear submanifold of  J t ~ ,  we have that z2 is continuous with respect 
to a strong operator topology on the unit ball of  d .  But this is a contradic- 
tion with the fact that z21Jl=0.  Therefore we have again that 
Tcz(Pr,)z2(Pr2) = rc2(Pr,Pr2) = 0 whenever 71 # ~2" 

Summing up, we have established that ~2(Pr)res is a family of nonzero 
pairwise orthogonal projections acting on ~ ,  and so dim ~ > IS]. 

Finally, using the fact that x is cyclic for z,  we see that 

dim K>_ dim ~(rn) = dim ~ {  z(P)xJPeL(H)} 

= dim ~p{z(A)x[A e ~ ( H ) }  

= dim (]t% 1 �9 9~2) > LSI 

This concludes the proof. �9 

Let us now consider the problem of  when L(H) admits a nontrivial K- 
valued orthogonal measure. It should be noted that there is no two-valued, 
finitely additive measure on L(H) (Alda, 1981) [or, equivalently, there is no 
nonzero orthogonal K-valued measure on L(H) with dim K =  1]. Another 
result (Kruszynski, 1988) says that dim H >  dim K if and only if there is 
no nonzero completely additive (or equivalently, nonsingular o--additive) 
measure m: L(H) --, K. It seems plausible that this result does not hold for 
finitely additive measures [the finite additivity property is unlikely to deter- 
mine infinite dimensions--see the conjecture in Kruszynski (1988, 1990)]. In 
this connection the following theorem seems to be somewhat surprising. 
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Theorem 2.5. For Hilbert spaces H and K, dim H > d i m  K if and only 
if there is no nonzero orthogonal measure m: L(H)  --* K. 

Proof Suppose that m: L(H)  --* K is a nontrivial orthogonal measure. 
According to Kruszynski (1988), if m is completely additive, then 
dim H < d i m K .  So we may restrict ourselves to the case when m is not 
completely additive. Then tr = dim H >  co, and using the fact that [tc x ~r = 
to, we can find a disjoint family S c  [tr ~ such that IS[ = tc. It is apparent from 
Lemma 2.4(0 that dim K >  IS[ = dim H. [] 

As a consequence of  the foregoing theorem, we obtain a result on the 
nonexistence of a Jordan homomorphism between some type I W*-factors, 
hitherto known for finite-dimensional matrix algebras only (Kruszynski, 
1988). [Let us recall that a real linear mapping q~: ~ ( H ) ~ N ( K )  is said 
to be a Jordan homomorphism if ~b( I )= I  and q~(A2)=~b(A) 2, whenever 
A ~ S(H).] 

Corollary 2.6. Let ~c and ~ be cardinals and let d l  and d 2  be two W*- 
factors of  the type IF (tr > 3) and 14, respectively. Then there exists a Jordan 
homomorphism q~:dl  ~ d 2  if and only if ~c <,L 

Proof This result follows easily from Theorem 2.5. Indeed, every 
Jordan homomorphism q~: dl--*~r induces a nontrivial orthogonal 
measure m: L(H)  ~ K (dim H =  tc, dim K =  .g) defined by putting 

m(P) = q~ (P)x, P 6 L ( H )  

where x is an arbitrary nonzero vector in K. [] 

Let us now investigate the additivity of  orthogonal vector measures. 
For  example (Hamhalter, to appear), if H is separable, then every H-valued 
orthogonal measure on L(H)  is a-additive (and so it is weakly a-additive 
as well as completely additive). We shall show in Proposition 2.9 that this 
result cannot be fully extended to nonseparable spaces. However, it allows 
the following generalizations. 

Theorem 2.7. Every weakly dim H-additive orthogonal measure 
m: L(H)  ~ H is completely additive. 

Proof Looking for a contradiction, let us suppose that m is not com- 
pletely additive. It is known (Balcar and St~p/mek, 1986) that there is a 
dim H-almost disjoint family S c ~ (d im H )  such that [S[ > dim H. But then 
[Lemma 2.5(ii)] we have dim H >  [S[ > dim H. We have reached a contradic- 
tion and thus completed the proof  of Theorem 2.7. [] 
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Theorem 2.8. Suppose that (dim H)~~ Then the following 
statements hold true: 

(i) Every orthogonal measure m: L(H) -~ H is weakly o--additive. 
(ii) Every weakly regular orthogonal measure m : L ( H ) - ~ H  is 

completely additive. 

Proof (i) Looking for a contradiction, let us suppose that m is not 
weakly o--additive. Proposition 1.2 guarantees the existence of an co-almost 
disjoint family S on dim H such that IS[ > dim H. Applying Lemma 2.4(ii), 
we infer that dim H >  ]S]--a contradiction. 

(ii) It follows immediately from the statement (i) and Proposition 
1.4(ii). [] 

Proposition 2.9. Suppose that (dim H)  ~ = dim H and dim H_>2 ~ Then 
there is a nonzero free orthogonal measure m" L(H) ~ H. 

Proof Let QeL(H) be a projection onto a separable infinite-dimen- 
sional subspace of H. Let g be a state of N(Q(H)) such that g vanishes on 
all finite-dimensional operators. Let us define a state f of N(H)  by setting 
f (A)  =g(QAQ]Q(H)) for every A eN(H). Let us consider a representation 
z of N(H)  on ~ obtained by the GNS construction from fi Put Y =  
{AeN(H)[f(A*A)=O}. Then ~ is a left null ideal o f f .  Thus, J f  is a 
completion of the space N ( H ) / Y  endowed with an inner product ( . , . )  
defined by the equality (~], B) =f(B*A) [A, BeN(H)] .  We prove that ~] = 
QA for every AeN(H).  Indeed, ( I - Q ) e J #  and so A ( I - Q ) = A - A Q e ~ .  
Making use of the spectral theorem, it can be shown that the set 
{PlPeL(H),dimP(H)=co} generates a dense subspace of ~g. So 
dim J f  < [{PIPe L(H), dim P(H) = co }[. 

Let us now investigate the size of the set dg of all closed separable 
infinite-dimensional subspaces of H. Let B be an orthonormal basis of H. 
Let us denote by M the subset of ~215176 consisting of all matrices 
(ai,j)i,jc-.Nx N such that 2jEN ]•i,j]2 ( O0 for every ieN. Put ~Ar = M x  ~~ • ~~ Let 
us define a mapping F: J V ' ~  in the following way: Suppose that 
r=[ (a i j ) ,  ( e i j ) ]eY.  Then we put F(r)=g~(vi)~N, where each vi is of the 
form vg= ~j~N aijei,;. The mapping F is surjective and so 

[~/gl < I~VI _< I ~ • ~ x co • o~Ol = max (2 ~~ (dim H)  ~ = dim H 

Let m: L ( H ) ~  2g ~ be an orthogonal vector measure given by the 
formula 

m(P) = Jr(P)x 

where xeJ(f  is a cyclic vector for ~r. We have m(P)=0 ,  whenever 
dim P(H) < Go. Moreover, dim N(m) _< dim ~f  _< dim H by the preceding 
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estimation. Identifying now N(m) with a subspace of H, we complete the 
proof of Proposition 2.9. [] 

Let us remark that the free orthogonal measure constructed in the 
foregoing proposition is not weakly o--additive and so the assumption 
(dim H)  '~ > dim H in Theorem 2.8 is essential. 
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